BOSTON
UNIVERSITY

Deep Learning for Data Science

DS 542

Lecture 23
Diffusion Models

Slides originally by Thomas Gardos.
Images from Understanding Deep Learning unless otherwise cited.

https://udlbook.com

Final Projects

e Mail me this week about how your project is doing.
o What are you currently working on?

o What is working?
o What needs help?

e Grading
o Did you build / finetune an appropriate model for your problem?
o What does your evaluation say you got out of the training process?
o How does your model advance the real goals of your project?

Evaluating Your Models

e Basic training/validation statistics (loss, accuracy, etc)
e Final statistics

e Comparison to benchmarks

o Original work if reproducing a paper.
o Current state of the art work on the same problem.

e o the extent possible,
o What modeling choices helped or hindered your model performance?
o Quantitative comparison before speculation on why.
o If reproducing a paper, you can vary parameter choices and assess the impact.
m Could you find better settings than the original authors?
m Repeat with different seeds for more confidence.

Generative Models

Last Time

e Normalizing Flows
o Key design change is invertibility of each layer
o Enables efficient probability computations

This Time

e Diffusion Models
o Very high quality (after a few false starts)
o Very fast (after moving to latent space)

Do we have good models?

GANs | VAEs | Flows | Diffusion
Efficient sampling v v v X : Gets fast
High quality v X X Y| after switch
Coverage X 7 ? ? to latent
Well-behaved latent space v v v X space.
Interpretable latent space v ? 7 X
Efficient likelihood n/a X v X

Diffusion Models

Encoder (forward/diffusion process)

A J

Decoder (reverse process) —————

Input, x | Z1 Z9 ZT 79 | Z1 Output, x

Figure 18.1 Diffusion models. The encoder (forward, or diffusion process) maps
the input x through a series of latent variables z;...z7r. This process is pre-
specified and gradually mixes the data with noise until only noise remains. The
decoder (reverse process) is learned and passes the data back through the la-
tent variables, removing noise at each stage. After training, new examples are
generated by sampling noise vectors zr and passing them through the decoder.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Diffusion Models - TLDR

TLDR

e Error diffusion adds noise everywhere over several steps.
e Reverse process removes it.
e Reverse process is a generative model.

Slightly more detail:

e Forward process repeatedly adds a little bit of Gaussian noise to every pixel.
o This is easy.

e Reverse process repeatedly removes that noise.
o Thisis hard.

Denoising Autoencoders

Early predecessors, but could not handle nearly as much noise.
6] B Dol [3] [8] I8 [%] [&] I8 b5 [8

o
C
C
C
o

NEFEowe gL A
NEeUeRQLAWC

S reveutawo

NF PP LW
NN L W
NPl A@dw
NS Lo

(a) SAE (b) SDAE
“Stacked Denoising Autoencoders: Learning Useful Representations in a Deep
Network with a Local Denoising Criterion” by Vincent et al (2010)

3)1’ b) T i &
=
&
2201 S
-3.0 21) 3.0
240 240 240
240 /5,
3 L N
. =
S
260 - > /\
-3.0 Z41 i i 3.0
280 280 280
280 —_—] /12?
[
\ { g
()
2100 - - . i i ANV .
-3.0 0.0 30" 3 281 3.0

Figure 18.2 Forward process. a) We consider one-dimensional data z with 7" =
100 latent variables zi,...,z100 and 8 = 0.03 at all steps. Three values of x
(orange, green, and gray) are initialized (top row). These are propagated
through z1,...,2100. At each step, the variable is updated by attenuating its
value by v/1 — 3 and adding noise with mean zero and variance § (equation 18.1).
Accordingly, the three examples noisily propagate through the variables with
a tendency to move toward zero. b) The conditional probabilities Pr(z|z)
and Pr(z¢|z:—1) are normal distributions with a mean that is slightly closer to
zero than the current point and a fixed variance f¢ (equation 18.2).

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Diffusion Models

After many rounds of the forward process,

e All images have become pure noise?
o close

e All images look like they are drawn from the same noise distribution
o Almost

e All images drawn from similar noise distribution?
o Yes
o Original image survives with a low weight.
o Noise has higher magnitude than original image.

a)x b) x*
%
8
=)
N
220 S
-3.0 220 ' 'x* 3.0
240 —
*
' [
‘E
j |
260 | &
| I %10 ' "~ 30
1 L
a
*
Z80 %
2
N
[
2100 - - - - |
-3.0 0.0 30 -3.0 280 3.0

Figure 18.3 Diffusion kernel. a) The point z* = 2.0 is propagated through the
latent variables using equation 18.1 (five paths shown in gray). The diffusion
kernel g(z:|z™) is the probability distribution over variable z; given that we started
from x*. It can be computed in closed-form and is a normal distribution whose
mean moves toward zero and whose variance increases as t increases. Heatmap
shows q(z¢|x™) for each variable. Cyan lines show +2 standard deviations from
the mean. b) The diffusion kernel g(z:|x™) is shown explicitly for ¢ = 20, 40, 80. In
practice, the diffusion kernel allows us to sample a latent variable z; corresponding
to a given x* without computing the intermediate variables z1,...,2:—1. When t
becomes very large, the diffusion kernel becomes a standard normal.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

&
~
2920 Qﬂ
3.0 T 3.0
240
=)
Q
=
260
3.0 ' ' 220 ' ' 3.0
<80 —
3
N,
(]
2100
-3.0 0.0 3.0 -3.0 260 3.0

Figure 18.4 Marginal distributions. a) Given an initial density Pr(z) (top row),
the diffusion process gradually blurs the distribution as it passes through the
latent variables z; and moves it toward a standard normal distribution. Each
subsequent horizontal line of heatmap represents a marginal distribution g(z;).
b) The top graph shows the initial distribution Pr(xz). The other two graphs
show the marginal distributions q(z20) and q(ze0), respectively.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Mathematics of Diffusion Models

Assume the forward and reverse process operate in T steps.

Both forward and reverse process are discrete so becomes a Markov
chain with gaussian transition probability.

Diffusion Process

Any diffusion process can be described by a stochastic differential
equation (SDE)

dX, = a(X, t)dt + o (X, t)dW,

where:
a(-) is called the drift coefficient
a(*) is called the diffusion coefficient
W is the Wiener process

Both a and o are a function of the value and time

N(u,0%)
Mathematics of Diffusion Models

Denote x, as a sample from a distribution g (x,).
Forward process: gaussian transition probability

q(xelxe_q) = N (xg; \/(1 — Bt) Xt—1,B:I) where te€N

and where f; indicates trade-off between info to be kept from previous
step and new noise added.

Rocca, 2022

N(u,0%)
Mathematics of Diffusion Models

Denote x, as a sample from a distribution g (x,).
Forward process: gaussian transition probability

q(xelxe_q) = N (xg; \/(1 — Bt) Xt—1,B:I) where te€N

and where f; indicates trade-off between info to be kept from previous
step and new noise added.

We can equivalently write
xe = (1= Be) Xe—q + \/ﬁ_t €; €~N(0,I)

Discretized diffusion process

Rocca, 2022

N(u,0%)
Mathematics of Diffusion Models

Through recurrence, we can represent any step in the chain as directly
represented from x;:

q(xelxg) = N (xe; Jae xo, (1 — a@p)l) So we can run
— many forward
steps at once.

ar=(1—-pB) and a;= f=1 a; = f=1(1 —Bi)
and from the Markov property, the entire forward trajectory is

T
aCror) = qGx) | [aGeelre-s)
t=1

where

Rocca, 2022

Intuition behind learning the reverse
process

Hard % Hard % Hard %

Reversing process in one step is extremely difficult

Rocca, 2022

Doing it in steps gives us some clues

a~n oo g .a;.‘

(= ~ = .0
Ends with high Easier as there is Not easy but Starting the reverse
quality sample less and less noise some clues appear process is hard

Rocca, 2022

One step versus multi-step

L N]
G, (to be G, (to be G,, (tobe G, (to be
learned) learned) learned) learned)

G* (to be learned)
Isn't it equivalent to learn a single big function G* instead of learning T smaller functions G;?
If we set G* = G,° G,o ... o G, ° G, both tasks can look pretty similar at first sight.

Rocca, 2022

Advantage of multi-step reverse process

1. Don’t have to learn a unique transform
G, for each step, but rather a single
transform that is a function of the
index step. Drastically reduces size of

the model.
v v
G, (to be G, (to be G,, (to be G, (to be

T omned - learmed) erned) e 2. Gradient descent is much more difficult
 Grgobeleamed in one step and can exploit coarse to
e sor G¥ o 6o G E g hothtacks con ook pretty sonilor ot frot Sgpt "

Chme fine adjustments in multiple steps.

Rocca, 2022

Iterative versus one step

[N N)
G (to be G (to be G (to be G (to be
learned) learned) learned) learned)

Learning transitions of the reverse process are not completely different tasks meaning
that we can learn a common model G(image , step) that takes both the current
image and the current step as inputs instead of one different model for each step

G* (to be learned)
G* can't rely on the same nice iterative structure than G, meaning that this unrolled version
supposed to be equivalent to G, ¢ G,o ... o G, , o G;will have more parameters and will be harder to train

Rocca, 2022

The reverse process

With the assumption on the drift and diffusion coefficients, the reverse
of the diffusion process takes the same form.

Reverse gaussian transition probability
q(xe—1|xt)
can then be approximated by
Po(Xe—1 | x¢) = N (xe—q; o (Xt t), Zg (X, 1))

where g and Xy are two functions parameterized by @ and learned.

Rocca, 2022

The reverse process

Using the Markov property, the probability of a given backward
trajectory can be approximated by

T
Po (Xo.7) = p(x7) l_[Po (x¢—11x¢)
t=1
where p(x7) is an isotropic gaussian distribution that does not depend

on @
p(xr) = N (xr;0,1)

Rocca, 2022

q(z1|xo) q(z2|z1) q(zr—_1|ZT—2) q(xr|zT_1)
)

|

e

T T e
‘S%\gﬁ} 3@’9{4 . %’«gﬁ'g;. B ,;é«*‘“g, g
a2 & . &

LN J
po(Zol|z1) po(z1|z2) po(zT—2|2T-1) po(zT-1l|2T)
Approximation of Gaussian transition kernel with parameters to be learned Initial distribution
q(zi-1|z:) Po(xi—1|z:) = N (zi-1; po(2e,), To (24, 1)) p(zr) = N(z4;0,1)

LEARNED BACKWARD PROCESS

Rocca, 2022

Questions

How do we learn the parameters 0 for gy and X4°?

What is the loss to be optimized?
* We hope that pg (x,), the distribution of the last step of the reverse
process, will be close to q(x,)

Optimization Objective

Iy, Xg = arg min (Dkr(q(zo)||pe(z0)))

Ho,2-0

g (e ())

— arg min (— / q(xonog(po(wo))dxo)

140,230

Skipping a lot more math

® Expand p-theta as marginalization integral

® Use Jensen’s inequality to define a slightly simpler
upper bound to the loss

® Some manipulations with Bayes’ Theorem

® Properties of KL divergence of two gaussian
distributions

® An additional simplification suggested by [Ho et al
2020]

27

Diffusion models in practice

We have the forward process

q(ze|Ti—1) = N (65 /1 — Bei—1, Be]) q(zi|zo) = N (z4; Varzo, (1 — az)I)
and our reverse process

po(Tt—1|Tt) = N (@4—1; po(xt, 1), Lo (21, 1))

and we want to train to minimize this simplified upper
bound

Ezo.t, (||€ — €0(zt,8)||*) = Eqp,t,e (|le — ea(v/@zo + V1 — Oue, t)||2)

Do We Really Need This Complicated Process?

Not a rhetorical question...

Why Can’t We Just Fit Function Directly?

e The forward process can generate pairs of clean sample + noisy sample.

e So can we just train the reverse function by reversing inputs and outputs?
o Train function: noisy sample — clean sample

Why Can’t We Just Fit Function Directly?

e The forward process can generate pairs of clean sample + noisy sample.

e So can we just train the reverse function by reversing inputs and outputs?
o Train function: noisy sample — clean sample

e Prone to overfitting instead of generalizing

o Even if we generate many noisy samples per clean samples
o Actually, probably will memorize those clean samples

Remember Variational Autoencoders?

A -

Avoid coverage

gaps like here.
without regularization x V with regularization

We have to regularize the means and the covariances too!
Regularize to a standard normal.

m) loss = || x-x|]? + KLI /N0,)]

Rocca, "Understanding Variational Autoencoders (VAEs)", 2019

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

Figure 18.8 Fitted model results. Cyan
and brown curves are original and esti-
mated densities and correspond to the
top rows of figures 18.4 and 18.7, re-
spectively. Vertical bars are binned sam-
ples from the model, generated by sam-
pling from Pr(zr) and propagating back
through the variables zr_1,z7_2,... as
shown for the five paths in figure 18.7.

True density
I == [Estimated density

30 0.0 3.0
Input, x

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

220

<40

260

Z80

2100

-3.0

23
q(23|22)
‘Q(Z2’Z§)

/|\ a(z2)
21 2o 3.0
q(21o/29)

q(29279)
i "
<9 25 3.0
a(z30l219))
q(219239)
Q(Z19)
0.0 0 30 Ze . 30

Figure 18.5 Conditional distribution q(z;—1|z¢). a) The marginal densities q(z:)
with three points z; highlighted. b) The probability q(z:—1|z{) (cyan curves) is
computed via Bayes’ rule and is proportional to q(z;|z¢t—1)q(z¢—1). In general, it
is not normally distributed (top graph), although often the normal is a good ap-
proximation (bottom two graphs). The first likelihood term ¢(z;|z:—1) is normal
in z;_1 (equation 18.2) with a mean that is slightly further from zero than z;
(brown curves). The second term is the marginal density g(z:—1) (gray curves).

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

b) 23
i a(z]73, %)

 a(z3122)

I\ g(z2]z*)
' 29 ' ' 3.0

%
210

[g(z0l710, 2%)
Q(ZTO‘ZE))

q(z|7)

-3.0)) 29 2510 ' 3.0

a(z191250,7) |

M el
q(z19]z") | | ‘

0.0 3.0 -30 ' - 21 ' ' 3.0

Figure 18.6 Conditional distribution g(z:¢—1|z¢,x). a) Diffusion kernel for z* =
—2.1 with three points z; highlighted. b) The probability g(z:—1|z;,2™) is com-
puted via Bayes’ rule and is proportional to q(z;|z:—1)q(zi—1|x™). This s nor-
mally distributed and can be computed in closed form. The first likelihood
term q(z{|z¢—1) is normal in z;,_1 (equation 18.2) with a mean that is slightly
further from zero than z; (brown curves). The second term is the diffusion ker-
nel q(zi—1|z*) (gray curves).

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

220
3.0
240
260
3.0
z
80 .
Q(Zl9 |220)
9(219)
2100 | : .
-3.0 0.0 3.0 -30 219 3.0

Figure 18.7 Fitted Model. a) Individual samples can be generated by sam-
pling from the standard normal distribution Pr(z7) (bottom row)and then sam-
pling zr_1 from Pr(zr_1|zr) = Normg,_, [fr[2r, ¢1], 071 and so on until we
reach x (five paths shown). The estimated marginal densities (heatmap) are the
aggregation of these samples and are similar to the true marginal densities (fig-
ure 18.4). b) The estimated distribution Pr(z:—1|z¢) (brown curve) is a reasonable
approximation to the true posterior of the diffusion model q(z;—1|z:) (cyan curve)
from figure 18.5. The marginal distributions Pr(z:) and q(z:) of the estimated

and true models (dark blue and gray curves, respectively) are also similar. .
el it it eyt et —nmer = —eramraieane —— — « -~ 1D license. (C) MIT Press.

Figure 18.10 Different diffusion processes that are compatible with the same
model. a) Five sampled trajectories or reparameterized model superimposed on
ground truth marginal distributions. Top row represents Pr(x) and subsequent
rows represent ¢(x:). b) Histogram of samples generated from reparameterized
model plotted alongside ground truth density curve Pr(x). The same trained
model is compatible with a family of diffusion models (and corresponding up-
dates in the opposite direction), including the denoising diffusion implicit (DDIM)
model, which is deterministic and does not add noise at each step. c) Five trajec-
tories from DDIM model. d) Histogram of samples from DDIM model. The same
model is also compatible with accelerated diffusion models that skip inference
steps for increased sampling speed. e) Five trajectories from accelerated model.
f) Histogram of samples from accelerated model.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Conditional Generation for Diffusion Models

Can apply various conditioning throughout the diffusion process.

e Many ways to do this.

e Easyone:
o concat conditioning vector as extra inputs to reverse steps.

e Will show some examples now, go into architecture later.

b)

U-Net e)

64><6

1024x1024

A Golden Retriever
dog wearing a blue
checkered beret and
red dotted turtleneck

Figure 18.11 Cascaded conditional generation based on a text prompt. a) A diffu-
sion model consisting of a series of U-Nets is used to generate a 64x64 image. b)
This generation is conditioned on a sentence embedding computed by a language
model. c) A higher resolution 256 x 256 image is generated and conditioned on the
smaller image and the text encoding. d) This is repeated to create a 1024x1024
image. e) Final image sequence. Adapted from Saharia et al. (2022b).

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Figure 18.12 Conditional generation using classifier guidance. Image samples
conditioned on different ImageNet classes. The same model produces high quality
samples of highly varied image classes. Adapted from Dhariwal & Nichol (2021).

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

S | 20°"

A transparent;culpture of a duck An angry duék doing heavy A brain riding a rocketship
made out of glass weightlifting at the gym heading towards the moon
I/, 12

A couple of glasses New York skyline with Hello World
sitting on a table written with fireworks in the sky

Figure 18.13 Conditional generation using text prompts. Synthesized images
from a cascaded generation framework, conditioned on a text prompt encoded by
a large language model. The stochastic model can produce many different images
compatible with the prompt. The model can count objects and incorporate text
into images. Adapted from Saharia et al. (2022b).
This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Diffusion Models

Eventually got quality comparable to GANSs...

e Better than VAEs and normalizing flows
e But very very slow

e Every step of the reverse process is working with full size images.

o Full size input
o Full size output

e Multi-resolution architectures are often a sign cost is an issue.
o But also useful for global consistency, so do not disregard.

Latent Diffusion

Key idea:

e Pixel space is big.
e Run diffusion process in smaller
latent space.

“High-Resolution Image Synthesis with
Latent Diffusion Models”

By Rombach, Blattman, Lorenz, Esser
and Ommer (2021)

ours (f =4)

PSNR: 27.4 R-FID: 0.58

DALL-E (f = 8)
PSNR: 22.8 R-FID: 32.01

VQGAN (f = 16)
PSNR: 19.9 R-FID: 4.98

Latent Diffusion Components

Latent diffusion models have two main components.

e Function mapping latent codes to high quality images.
o This function does not need to have all the qualities we want from generative models.
o In particular, much of the latent space may not make sense.
o This can be off the shelf.

e Function mapping noise to latent codes of high quality images.
o This is the latent diffusion part.

o Same reverse process as before, but working in latent space.
o This is smaller and easier to customize to different applications.

Different Models for
Different Tradeoffs

Focus on lower dimension latent
model that gets the semantic details
right...

e Diffusion in latent space
e Use another high quality model
for image generation.

“High-Resolution Image Synthesis with
Latent Diffusion Models”

By Rombach, Blattman, Lorenz, Esser
and Ommer (2021)

Distortion (RMSE)

80

60

40

20

Semantic Compression

— Generative Model:

Latent Diffusion Model (LDM)

Perceptual Compression

— Autoencoder+GAN

0.5 O

Rate (bltb/dlm)

A Random Latent
from Stable Diffusion

latent = torch.randn(l, 32, 32, 4)
latent image = decode latent (latent)

Image shape is 1x256x256x3f

This is that high
quality image
model?

https://stability.ai/

https://stability.ai/

—— % Ol
Res. block WX o Concatenate

Res. block +
self-attention
Concatenate
Picking a
' Concatenat
good latent is oncatenate
Concatenate

still a hard

problem. B o S e ‘ -/
///// el

time embedding

Figure 18.9 U-Net as used in diffusion models for images. The network aims to
predict the noise that was added to the image. It consists of an encoder which
reduces the scale and increases the number of channels and a decoder which in-
creases the scale and reduces the number of channels. The encoder representations
are concatenated to their partner in the decoder. Connections between adjacent
representations consist of residual blocks, and periodic global self-attention in
which every spatial position interacts with every other spatial position. A single
network is used for all time steps, by passing a sinusoidal time embedding (fig-
ure 12.5) through a shallow neural network and adding the result to the channels
at every spatial position at every stage of the U-Net.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Conditioning in Latent Space
Conditioning takes over all of latent sampling.

&) Latent Space N\ Ca Condltlomra

Pick your EIU Diffusion Process Eemgmq
Denoising U-Net €g
favorite i
: ’ Repres

autoencoder 4-»
with a small E
latent space

Pixel Space)

>/
T
U
L 4

denoising stepf crossattention switch skip connection concat

Conditioning affects

T total repetitions ~
each denoising step.

of denoising with
conditioning.

Applications of Latent Diffusion Models

Latent diffusion models have two main components.

e Function mapping latent codes to high quality images.
o This function does not need to have all the qualities we want from generative models.
o In particular, much of the latent space may not make sense.

e Function mapping noise to latent codes of high quality images.

o This is the latent diffusion part.
o Just this part gets retrained for different applications.

Super Resolution

e Downsample training images 4x

e Upsample with bicubic
interpolation.

e Train latent diffusion model to
recover the finer-grained
details.

“High-Resolution Image Synthesis with
Latent Diffusion Models”

By Rombach, Blattman, Lorenz, Esser
and Ommer (2021)

Figure 9. ImageNet 64—256 super-resolution on ImageNet-Val.
LDM-SR has advantages at rendering realistic textures but SR3
can synthesize more coherent fine structures. See appendix for
additional samples and cropouts. SR3 results from [/"'].

In Painting

Mask some of the image and
reconstruct rest of the image to be
consistent.

e Don’t change the unmasked
part!

e Keeping unmasked part mostly
easy because latent code has
spatial structure.

“High-Resolution Image Synthesis with
Latent Diffusion Models”

By Rombach, Blattman, Lorenz, Esser
and Ommer (2021)

input result

Figure 10. Qualitative results on object removal with our big, w/
Jt inpainting model. For more results, see Fig. 21.

Custom QR Codes

N
N
I
—
-
0
i
=
<
2
£
Q
9
(®)
S
<
=
(<)
=
Q
£
@
=
<

=
a
mm
o
©
=
)
>

https://mp.weixin.qq.com/s/i4WR5ULH1ZZYl8Watf3EPw
https://mp.weixin.qq.com/s/i4WR5ULH1ZZYl8Watf3EPw

ControlNet

c
Previous QR Code example based on e [reemeeeeneenaeeens ;
ControlNet. | | zero convolution |
X 3 ¢ ' : Hl-\
e Generic technique to modify | l § I
diffusion process to shape ‘ neural network ’ " neural network T { T DI]
resulting output. J block ~ block (locked) :
e Constant c initialized to zero to ‘ | s corlvolution '
block action until helpful. y (#) =]
“Adding Conditional Control to y ControlNet
Text-to-Image Diffusion Models” by
(a) Before (b) After

Zhang, Rao and Agrawala (2023)

https://github.com/lllyasviel/ControlNet

https://github.com/lllyasviel/ControlNet

ControlNet

Previous QR Code example based on
ControlNet.

e Generic technique to modify
diffusion process to shape
resulting output.

e Constant c initialized to zero to
block action until helpful.

“Adding Conditional Control to
Text-to-Image Diffusion Models” by
Zhang, Rao and Agrawala (2023)

https://github.com/lllyasviel/ControlNet

Prompt

l

|\ Text Encoder L«\

Condition

|

zero convolution

[

Input
{

SD Encoder Block 1
6464 6] 2

Time

| ‘L
| Time Encoder -

~ SD Encoder Block 2 __ |

32x32

8 -

_1’\

N 1)
Block 4 8x8 6’ P
: J

' SD Decoder Block 3 |

SD Encoder Block_3w -
16x16 [*Y

SD Encoder
Block 4 8x8 61 xd

-

[SD Middle

&
Prompt&Time I)

SD Encoder Block 1
64x 64 (trainable copy)

i

I
' SD Encoder Block_2
32x32 (trainable copy)

Block x5 & ‘

SD Decoder] 3

SD Middle Block
8x8 (trainable copy)

zero convolution

zero convolution

zero convolution

] 16% 16 a'J 3
|

SD Decoder Block 2 -, |
32x32 a A

t

SD Decoder Block 1 a] e

64x64

!
Output

(a) Stable Diffusion

zero convolution

(b) ControlNet

|
SD Encoder Block_3 .
16x 16 (trainable copy)

I
SD Encoder Block 4| 3
8x8 (trainable copy)| |

zero convolution %3

x3

x3

x3

https://github.com/lllyasviel/ControlNet

ControlNet

What are those control blocks for?

e Drive output image to have a
particular property.

e Usually specified as feature
extractor module and target
output.

Input Canny edge

“Adding Conditional Control to
Text-to-Image Diffusion Models” by
Zhang, Rao and Agrawala (2023)

Input human pose Default “chef in kitchen” “Lincoln statue”

https://github.com/lllyasviel/ControlNet

https://github.com/lllyasviel/ControlNet

Rest of the Semester

Neural Fields (11/25)
Thanksgiving break (11/27)
Reinforcement learning (12/2)
Project presentations (12/4)
Project presentations (12/9)

Feedback?

